RESEARCH ARTICLE | OCTOBER 09 2023

On countably uniformly paracompact mappings ⊘

T. Zh. Zhumaliev; B. E. Kanetov

Check for updates *AIP Conf. Proc.* 2879, 020006 (2023) https://doi.org/10.1063/5.0175193

CrossMark

On integrable potential perturbations of the billiard system within an ellipsoid

J. Math. Phys. (June 1997)

On Countably Uniformly Paracompact Mappings

T.Zh. Zhumaliev^{1,a)} and B.E. Kanetov^{2,b)}

¹Kyrgyz National Agrarian University named after K.I. Scriabin, Bishkek, Kyrgyzstan ²Kyrgyz National University named after Jusup Balasagyn, Bishkek, Kyrgyzstan

> ^{a)}turgun Ω_{-} @mail.ru ^{b)}Corresponding author: bekbolot Ω_{-} kanetov@mail.ru

Abstract. In this work we introduce and study countably uniformly paracompact mappings. Keywords: Uniformly continuous mapping, countably uniformly paracompact mappings, countably uniformly paracompact space. PACS: 54E15, 54D20.

INTRODUCTION

Throughout the work all uniform spaces are assumed to be Hausdorff and mappings continuous.

For covers λ and μ of a set *X*, we have:

$$\lambda \wedge \mu = \{L \cap K : L \in \lambda, K \in \mu\};$$

$$\lambda(x) = \bigcup St(\lambda, x), St(\lambda, x) = \{L \in \lambda : L \ni x\}, x \in X;$$

$$\lambda(H) = \bigcup St(\lambda, H), St(\lambda, H) = \{L \in \lambda : L \cap H \neq \emptyset\}, H \subset X.$$

For covers λ and μ of the set *X*, the symbol $\lambda > \mu$ means that the cover λ is a refinement of the cover μ , i.e. for any $L \in \lambda$ there is $K \in \mu$ such as $L \subset K$ and, the symbol $\lambda * > \mu$ means that the cover λ is a strongly star refinement of the cover μ , i.e. for any $L \in \lambda$ there is $K \in \mu$ such as $\lambda(L) \subset K$. The cover λ is finitely additive if $\lambda = \lambda^{2}$, $\lambda^{2} = \{\bigcup \lambda_{0} : \lambda_{0} \subset \lambda$ is finite }. Let $g : X \to Y$ be a mapping. If λ and μ are the covers of *X* and *Y*, respectively, then $g\lambda = \{gL : L \in \lambda\}$ and $g^{-1}\mu = \{g^{-1}K : K \in \mu\}$ is covers of *Y* and *X*, respectively. $g^{\#}\lambda = \{g^{\#}L : L \in \lambda\}, g^{\#}L = Y \setminus g(X \setminus L)$. For cover some properties see [2], [5], [7].

A cover λ of the uniform space (X, Σ) is called *uniformly locally finite*, if there is a cover $\mu \in \Sigma$ such that every $K \in \mu$ meets λ only for a finite number of elements of λ , [3].

A uniform space (X, Σ) is called *countable uniformly paracompact* if every countable open cover λ has a uniformly locally finite refinement, [4];

Let $g : (X, \Sigma) \to (Y, \Sigma')$ be a uniformly continuous mapping of a uniform space (X, Σ) onto a uniform space (Y, Σ') . The mapping g is called:

1) *uniformly open*, if g maps each open cover $\alpha \in \Sigma$ to an open cover $g\alpha \in \Sigma'$ [1];

2) precompact, if for each $\lambda \in \Sigma$ there is a cover $\mu \in \Sigma'$ and finite cover $\gamma \in \Sigma$, such that $g^{-1}\mu \wedge \gamma > \lambda$ [1];

3) uniformly perfect, if it is both precompact and perfect [1].

For the uniformity Σ by τ_{Σ} we denote the topology generated by the uniformity.

COUNTABLE UNIFORMLY PARACOMPACT SPACE AND MAPPINGS

Definition 1 Let $g: (X, \Sigma) \to (Y, \Sigma')$ be a uniformly continuous mapping of the space (X, Σ) onto a uniform space (Y, Σ') . The mapping g is said to be countably uniformly paracompact if for each countable open cover λ of (X, Σ) there exist a countable open cover μ of (Y, Σ') and a uniformly locally finite open cover γ of (X, Σ) , such that $g^{-1}\mu \land \gamma > \lambda$.

Sixth International Conference of Mathematical Sciences (ICMS 2022) AIP Conf. Proc. 2879, 020006-1–020006-4; https://doi.org/10.1063/5.0175193 Published by AIP Publishing. 978-0-7354-4695-3/\$30.00

020006-1

Proposition 1 Let $g: (X, \Sigma) \to (Y, \Sigma')$ be a uniformly continuous mapping of a uniform space (X, Σ) onto a uniform space (Y, Σ') . If (X, Σ) is countably uniformly paracompact then the mapping g is countably uniformly paracompact.

Proof. Let (X, Σ) be a countably uniformly paracompact space and α be an arbitrary open cover. Then exist uniformly locally finite open cover λ of (X, Σ) such as λ is refinement of α . For countable open cover μ of the space (Y, Σ') we have that the cover $g^{-1}\mu \wedge \lambda > \alpha$. Consequently, the mapping g is countably uniformly paracompact.

Proposition 2 If a uniformly continuous mapping $g : (X, \Sigma) \to (Y, \Sigma')$ of a uniform space (X, Σ) onto a uniform space (Y, Σ') , $Y = \{y\}$ is countably uniformly paracompact, then the space (X, Σ) is countably uniformly paracompact.

Proof. Let g be a countably uniformly paracompact mappings and α be an arbitrary open cover of the space (X, Σ) . Then exists such countable open cover μ of the space (Y, Σ') and uniformly locally finite open cover λ of the space (X, Σ) , that the cover $g^{-1}\mu \wedge \lambda > \alpha$. Since $Y = \{y\}$, then $f^{-1}\mu \wedge \lambda = \lambda$. Thus, (X, Σ) is countably uniformly paracompact.

Lemma 1 If λ and μ are uniformly locally finite covers of the space (X, Σ) , then $\lambda \wedge \mu$ is a uniformly locally finite cover of (X, Σ) .

Proof. Let λ and μ be uniformly locally finite covers of the space (X, Σ) . We show the cover $\lambda \wedge \mu$ is also a uniformly locally finite cover of (X, Σ) . Since the covers λ and μ are uniformly locally finite, there are covers $\beta \in \Sigma$ and $\eta \in \Sigma$, such as $M \subset \bigcup_{i=1}^{n} L_i, N \subset \bigcup_{j=1}^{m} K_j$ for any $M \in \beta, N \in \eta$. Note that $M \cap N \subset \bigcup_{i=1}^{n} \bigcup_{j=1}^{m} (L_i \cap K_j), M \cap N \in \beta \wedge \eta$. Obviously, $\beta \wedge \eta \in \Sigma$. Thus, $\lambda \wedge \mu$ is uniformly locally finite.

Lemma 2 Let $g : (X, \Sigma) \to (Y, \Sigma')$ be a uniformly continuous mapping of the space (X, Σ) onto the space (Y, Σ') . If μ is uniformly locally finite open cover of the space (Y, Σ') , then $g^{-1}\mu$ is uniformly locally finite open cover of the space (X, Σ) .

Proof. Let *g* be a uniformly continuous mapping and μ be a uniformly locally finite open cover of the space (Y, Σ') . Then there is a cover $\lambda \in \Sigma'$ such as for any $L \in \lambda$ there are elements $K_i \in \mu$, i = 1, 2, ..., n, such that $L \subset \bigcup_{i=1}^{n} K_i$. Since *g* is a uniformly mapping, then $g^{-1}\mu$ is an open cover of (X, Σ) and $g^{-1}\lambda \in \Sigma$. Consequently, $g^{-1}L \subset \bigcup_{i=1}^{n} g^{-1}K_i$,

 $g^{-1}K_i \in g^{-1}\mu$. Thus, the cover $g^{-1}\mu$ is a uniformly locally finite open cover of the space (X, Σ) .

Proposition 3 Let $g : (X, \Sigma) \to (Y, \Sigma')$ be a uniformly continuous mapping of the space (X, Σ) onto the space (Y, Σ') and $j : (Y, \Sigma') \to (Z, \Sigma'')$ be a uniformly continuous mapping of the space (Y, Σ') onto the space (Z, Σ'') . If g and j are countably uniformly paracompact, then their composition $h = j \circ g$ is countably uniformly paracompact.

The proof follows from Lemmas 1 and 2.

Proposition 4 If $g : (X, \Sigma) \to (Y, \Sigma')$ is a countably uniformly paracompact mapping $M \subset X$ is a closed subset, then its restriction $g|_M : (M, \Sigma_M) \to (Y, \Sigma')$ is a countably paracompact mapping.

Proof. Let λ_M be an arbitrary finitely additive countably open cover of the space (M, Σ_M) . Then there are finitely additive countably open family α of the space (X, Σ) , such that $\alpha \wedge \{M\} = \lambda_M$. It is clear that the family $\lambda = \{\alpha, X \setminus M\}$ is a finitely additive countably open cover of (X, Σ) . Then there is countably open cover μ of (Y, Σ') and a uniformly locally finite cover $\gamma \in \Sigma$, such that $g^{-1}\mu \wedge \gamma > \lambda$. It is easy to see $(g|_M)^{-1}\mu \wedge \gamma_M > \lambda_M$. Therefore, the mapping $g|_M$ is countably uniformly paracompact.

Theorem 1 If $g : (X, \Sigma) \to (Y, \Sigma')$ is a countably uniformly paracompact mapping, and (Y, Σ') is countably uniformly paracompact, then the uniform space (X, Σ) is countably uniformly paracompact.

Proof. Let α be an arbitrary open cover of the space (X, Σ) . Then there is an open cover μ of the space (Y, Σ') and a uniformly locally finite open cover λ of the space (X, Σ) , such that $g^{-1}\mu \wedge \lambda > \alpha$. By countably uniform paracompactness of the space (Y, Σ') , [5]. There is uniformly locally finite open cover μ_0 , such as the cover μ_0 is a refinement of μ . Obviously, $g^{-1}\mu_0 \wedge \lambda > g^{-1}\mu \wedge \lambda$. By virtue of Lemma 2 the open cover $g^{-1}\mu_0$ is uniformly star finite. Put $g^{-1}\mu_0 \wedge \gamma = \delta$. By virtue of Lemma 1 the open cover δ is uniformly locally finite. Hence, the space (X, Σ) is countably uniformly paracompact, [12].

The question arises: Which mappings preserve countable uniform paracompactness in both directions?

Theorem 2 Let $g : (X, \Sigma) \to (Y, \Sigma')$ be uniformly perfect mapping between the space (X, Σ) and (Y, Σ') . Then uniformly countable paracompactness is preserved both in the image and the preimage direction.

Proof. Let the space (X, Σ) be a countably uniformly paracompact and μ be an arbitrary finitely additive countable open cover of the space (X, Σ) , [7]. Then $g^{-1}\mu$ is a finitely additive countable open cover of the space (X, Σ) . By Condition 2 in [4] $g^{-1}\mu \in \Sigma$. In view of the precompactness of the mapping g there are a cover $\alpha \in \Sigma'$ and a finite cover $\gamma \in \Sigma$, such that $g^{-1}\alpha \wedge \gamma > f^{-1}\mu$. Note that $(g^{-1}\alpha \wedge \gamma)^{\angle} = (g^{-1}\alpha)^{\angle}$ and $(g^{-1}\beta)^{\angle} = g^{-1}\mu^{\angle}$. Therefore $(g^{-1}\alpha)^{\angle} > g^{-1}\mu$ hence $\alpha > \mu$. Then $\beta \in \Sigma'$. By Condition 2 in [4] the space (Y, Σ') is countably uniformly paracompact, [5].

Conversely, let the space (Y, Σ') be a countably uniformly paracompact and λ be an arbitrary finitely-additive countable open cover of (X, Σ) . Then $\{g^{-1}y : y \in Y\} > \lambda$, [5]. Since *g* is a closed mapping, it follows that $\alpha = \{g^{\#}L : L \in \lambda\}$ is finitely-additive countable open cover of (Y, Σ') , $g^{\#}L = Y \setminus f(X \setminus L)$. By countable paracompactness of the space (Y, Σ') there exist a locally finite cover $\mu \in \Sigma'$, such that $\mu > \alpha$. Then $g^{-1}\mu > \alpha$ and according to Lemma 2 the cover $g^{-1}\mu$ is locally finite. Consequently, (X, Σ) is countably uniformly paracompact.

Theorem 3 Let $g : (X, \Sigma) \to (Y, \Sigma')$ be a uniformly open mapping of the space (X, Σ) onto the space (Y, Σ') . If (X, Σ) is countably uniformly paracompact space, then (Y, Σ') is countably uniformly paracompact.

Proof. Let *g* be a uniformly open mapping of (X, Σ) onto (Y, Σ') and λ be an arbitrary open countable cover of (X, Σ) , [12]. Then $g^{-1}\lambda = \alpha$ is an open countable cover of the space (X, Σ) . Since (X, Σ) is countably uniformly paracompact, then by Condition 2 in [4] we have $\mu^{\angle} \in \Sigma$. Note that $g(\gamma^{\angle}) = \lambda^{\angle}$. Then from the uniform openness of the mapping *g* we have $\lambda^{\angle} \in \Sigma'$. Consequently, the space (Y, Σ') (by Condition 2 in [4]) is countably uniformly paracompact.

Recall that a uniformly continuous mapping $g : (X, \Sigma) \to (Y, \Sigma')$ of uniform space (X, Σ) onto a uniform space (Y, Σ') is called uniformly paraclosed, if for any open uniform cover $\lambda \in \Sigma$ of the space (X, Σ) , the cover $\{f^{-1}y : y \in Y\}$ is a refinement of λ^{\angle} . Then $g^{\#}\lambda^{\angle}$ is an open uniform cover of (Y, Σ') . A uniformly continuous mapping $g : (X, \Sigma) \to (Y, \Sigma')$ of the space (X, Σ) onto the space (Y, Σ') is called uniformly paraperfect if it is both paraclosed and compact, [1].

Proposition 5 If a uniformly continuous mapping $g : (X, \Sigma) \to (Y, \Sigma')$ of the space (X, Σ) onto the space (Y, Σ') is uniformly paraperfect, then the continuous mapping $g : (X, \tau_{\Sigma}) \to (Y, \tau_{\Sigma'})$ of the topological space (X, τ_{Σ}) onto the topological space $(Y, \tau_{\Sigma'})$ is a closed mapping.

Proof. Let *O* be an arbitrary open cover of the space (X, τ_{Σ}) such that $O \supset g^{-1}y$, [6]. Then there exist $\lambda \in \Sigma$ such that $\lambda(g^{-1}y) \subset O$. It is clear that the cover $\{g^{-1}y : y \in Y\}$ is a refinement of λ^{\angle} . Since the mapping *g* is paraperfect, then $g^{\#}\lambda^{\angle} \in \Sigma'$. Assume $\beta = f^{\#}\lambda^{\angle}$. Then there exists $B \in \beta$ such that $B \ni y$ and $g^{-1}B \subset O$. Hence the continuous mapping $g : (X, \tau_{\Sigma}) \to (Y, \tau_{\Sigma'})$ is a closed.

Proposition 6 Let $g : (X, \Sigma) \to (Y, \Sigma')$ be a uniformly paraperfect mapping. If (X, Σ) is countably uniformly paracompact then (Y, Σ') is also countably uniformly paracompact.

Proof. Let μ be an arbitrary finite additive countable open cover of (Y, Σ') . Then $g^{-1}\mu = \lambda$ is finitely additive countable open cover of (X, Σ) , [7]. It is easy to see that the cover $\{g^{-1}y : y \in Y\}$ consisting of compact subsets $g^{-1}y$ of the space (X, Σ) is a refinement of λ . Then, due to the uniform paraperfecness of the mapping g, the cover $g^{\#}\lambda^{\angle} = g^{\#}\lambda$ is an open cover of the space (Y, Σ') . It is clear that $g^{\#}\lambda > \mu$. Therefore, μ is a uniform cover of (Y, Σ') . So (Y, Σ') is a countably uniformly paracompact space.

Theorem 4 Let $g : (X, \Sigma) \to (Y, \Sigma')$ be a uniformly paraperfect mapping. Then (X, Σ) is a countably uniformly paracompact if the (Y, Σ') is countably uniformly paracompact.

Proof. Let (Y, Σ') be a countably uniformly paracompact space and λ be an arbitrary finitely additive open cover of (X, Σ) . Note that the cover $\{g^{-1}y : y \in Y\}$ is a refinement of the cover λ . According to Proposition 5 the cover $g^{\#}\lambda$ is open, put $\mu = g^{\#}\lambda$. Since the uniform space (Y, Σ') is paracompact, then cover $\mu^{\angle} = g^{\#}\lambda^{\angle} = g^{\#}\lambda$ is a uniform cover of the space (Y, Σ') . It is easy to see that $g^{-1}\mu^{\#} > \lambda$, [10]. Hence (X, Σ) is countably uniformly paracompact. The validity of the converse assertion follows from Proposition 6.

REFERENCES

- [1] A.A. Borubaev, Uniform Spaces and Uniformly Continuous Mappings, Ilim, Frunze, 1990 (in Russian).
- [2] Lj.D. Kočinac, Selection principles in uniform spaces, Note Mat, 22:2, 127-139(2003).
- [3] B.E. Kanetov, *Some classes of Uniform Spaces and Uniformly Continuous Mappings*, Bishkek, 2013 (in Russian).
- [4] U. Marconi, On the uniform paracompactness, Rend. Sem. Mat. Univ. Padova, 319-328(1984).
- [5] B.E. Kanetov, D.E. Kanetova, N.A. Altybaev, AIP Conference Proc. 2334, 020011, https://doi.org/10.1063/5.0046213 (2021).
- [6] B.E. Kanetov and N.A. Baigazieva, AIP Conference Proc. 1997, 020085, doi.org/10.1063/1.5049079 (2018).
- [7] B.E. Kanetov, A.M. Baidzhuranova, B.A. Almazbekova, AIP Conference Proc. **2483**, 020004, https://doi.org/10.1063/5.0129289 (2022).
- [8] B.E. Kanetov, U.A. Saktanov, D.E. Kanetova, AIP Conference Proc. 2183, 030011, https://doi.org/10.1063/1.5136115 (2019).
- [9] B.E. Kanetov, D.E. Kanetova, M.O. Zhanakunova, AIP Conference Proc. 2183, 030010, https://doi.org/10.1063/1.5136114 (2019).
- [10] B.E. Kanetov, A.M. Baidzhuranova, AIP Conference Proc. 2183, 030009, https://doi.org/10.1063/1.5136113 (2019).
- [11] B.E. Kanetov, U.A. Saktanov, A.M. Baidzhuranova, AIP Conference Proc. 2334, 020013, https://doi.org/10.1063/5.0046220 (2021).
- B.E. Kanetov, N.A. Baigazieva, AIP Conference Proc. 1880, 030016, https://doi.org/10.1063/1.5000615 (2017).