RESEARCH ARTICLE | OCTOBER 09 2023

On the *R*-compactification of uniform spaces *⊗*

A. A. Borubaev; B. E. Kanetov S; A. M. Baidzhuranova; T. Zh. Zhumaliev; A. Bekbolsunova

Check for updates *AIP Conf. Proc.* 2879, 020001 (2023) https://doi.org/10.1063/5.0175194

CrossMark

Articles You May Be Interested In

Completing the dark matter solutions in degenerate Kaluza-Klein theory

J. Math. Phys. (April 2019)

Gibbs measures based on 1d (an)harmonic oscillators as mean-field limits

J. Math. Phys. (April 2018)

An upper diameter bound for compact Ricci solitons with application to the Hitchin-Thorpe inequality. II

J. Math. Phys. (April 2018)

On the *R***-Compactification of Uniform Spaces**

A.A. Borubaev,^{1, a)} B.E. Kanetov,^{2, b)} A.M. Baidzhuranova,^{3, c)} T.Zh. Zhumaliev,^{4, d)} and A. Bekbolsunova^{5, e)}

¹Institute of Mathematics of NAS KR, Bishkek, Kyrgyz Republic.

²Kyrgyz National University named after Jusup Balasagyn, Kyrgyz-Turkish Manas University, Bishkek, Kyrgyz Republic.
³International Higher School of Medicine, Bishkek, Kyrgyz Republic.
⁴Kyrgyz National Agrarian University named after K. I. Skryabina, Bishkek, Kyrgyz Republic.

⁵*Kyrgyz State Technical University named after I. Razzakov, Bishkek, Kyrgyz Republic.*

^{a)}fiztech-07@mail.ru ^{b)}Corresponding author: bekbolot_kanetov@mail.ru ^{c)}anara1403@bk.ru ^{d)}turgun_80@mail.ru ^{e)}abekbolsunova@gmail.com

Abstract. As it is well known, there are various constructions of the *R*-compactification (Hewitt real compactification) of a uniform space [13], [15]. In this work we propose a new construction of the *R*-compactification (Hewitt real compactification) of a uniform space.

Keywords: ℵ₀-boundedness, *R*-compactification, *R*-extension, *R*-completeness. MSC: 54E15, 54D20.

INTRODUCTION

In this paper, it is presupposed that all uniform spaces are Hausdorff. Consequently, the mappings within these spaces are uniformly continuous.

For systems λ and μ of a set *X*, we have [11]:

$$\begin{split} \lambda \wedge \mu &= \{L \cap M : L \in \lambda, M \in \beta\}. \ \lambda(x) = \bigcup St(\lambda, x);\\ St(\lambda, x) &= \{L \in \lambda : L \ni x\}, x \in X;\\ \lambda(H) &= \bigcup St(\lambda, H), St(\lambda, H) = \{L \in \lambda : L \cap H \neq \varnothing\}, H \subset X. \end{split}$$

For coverings λ and μ of the set X, the symbol $\lambda \succ \mu$ means that the covering λ is a refinement of the covering μ , i.e. for any $L \in \lambda$ there are $M \in \mu$ such as $L \subset M$, and the symbol $\lambda \ast \succ \mu$ denote that the covering λ is a strongly star refinement of μ , i.e. for any $L \in \lambda$ there are $M \in \mu$ such as $\lambda(L) \subset M$. Let $g: X \to Y$ be a mapping. If λ and μ are the coverings of X and Y, respectively, then $g\lambda = \{gL : L \in \lambda\}$ and $g^{-1}\mu = \{g^{-1}M : M \in \mu\}$ are coverings of Y and X, respectively, [6].

A Tychonoff space X is called R-complete, if there is no Tychonoff space X^* that satisfies the following two conditions:

(*RC*1) An embedding exists that is homeomorphic to $r: X \to X^*$ such as $r(X) \neq [r(X)]_{X^*} = X^*$.

(*RC2*) For any continuous real mapping $g: X \to R$ there is a mapping $g^*: X^* \to R$ such as $g^*r = g$, [13].

Asume that X is a nonempty set. If the following conditions are met, the system Σ of coverings of set X is referred to as a uniformity on X:

(*P*1) If $\lambda \in \Sigma$ and λ is a refinement of the covering μ of the set *X*, then $\mu \in \Sigma$;

(*P*2) For any $\lambda_1 \in \Sigma$ and $\lambda_2 \in \Sigma$ there are $\lambda \in \Sigma$ such as $\lambda \succ \lambda_1$ and $\lambda \succ \lambda_2$;

(P3) For any $\lambda \in \Sigma$ there are $\mu \in \Sigma$ such as $\mu * \succ \lambda$;

(*P*4) For any pair of different points $x, y \in X$ there are $\lambda \in \Sigma$ such as no element λ contains both x and y.

For the uniformity Σ by τ_{Σ} we denote the topology generated by the uniformity. When a uniformity Σ on a set X produces the same topology as X, we can say that Σ is a uniformity on the topological space X. The filter F is called a Cauchy filter in (X, Σ) if $\lambda \cap F \neq \emptyset$ for any $\lambda \in \Sigma$, [9].

A uniform space (X, Σ) is called:

(i) precompact if the uniformity Σ has a base that comprises finite coverings, [1], [9];

(ii) the uniformity Σ is considered \aleph_0 -bounded if it has a base comprising countable coverings, [3].

(iii) complete if every Cauchy filter in it converges, [1], [2], [4].

A uniform space (X^*, Σ^*) is called the completion of a uniform space (X, Σ) , if

Sixth International Conference of Mathematical Sciences (ICMS 2022) AIP Conf. Proc. 2879, 020001-1–020001-4; https://doi.org/10.1063/5.0175194

Published by AIP Publishing. 978-0-7354-4695-3/\$30.00

020001-1

1. $X \subset X^*$;

2. (X, Σ) is everywhere dense in (X^*, Σ^*) ;

3. (X^*, Σ^*) - complete, [5].

The completion (X^*, Σ_c^*) of a uniform space (X, Σ_c) is called the Samuel compactification of (X, Σ) , where Σ_c is the precompact reflection of the uniformity Σ (see [1]). The notation $(sX, s\Sigma)$ represents the Samuel compactification of a uniform space (X, Σ) , [5], [10].

A mapping $g: (X, \Sigma) \to (Y, \Sigma')$ of a space (X, Σ) into a space (Y, Σ') is called uniformly continuous if for any $\mu \in \Sigma'$ there are $\lambda \in \Sigma$ such as $g\lambda \succ \mu$, [1], [2].

Suppose $g: (X, \Sigma) \to (Y, \Sigma')$ is a uniformly continuous mapping from a space (X, Σ) to a space (Y, Σ') . A bijective mapping $g: (X, \Sigma) \to (Y, \Sigma')$ of a space (X, Σ) to a space (Y, Σ') is called a uniform homeomorphism or a uniform isomorphism if both $g: (X, \Sigma) \to (Y, \Sigma')$ and $g^{-1}: (Y, \Sigma') \to (X, \Sigma)$ are uniformly continuous. For each space (X, Σ) and any subspace (X_0, Σ_{X_0}) , the formula $j_{X_0}(x) = x$ defines a uniformly mapping $j_{X_0}: (X_0, \Sigma_{X_0}) \to (X, \Sigma)$. The mapping j_{X_0} is called a uniform embedding of the subspace (X_0, Σ_{X_0}) into the space (X, Σ) , [1], [2], [4].

*R***-COMPACTIFICATION OF UNIFORM SPACE**

Let (X, Σ) be a uniform space.

Lemma 1 A uniform space (X, Σ) is \aleph_0 -bounded iff every uniform covering contains a countable subcovering.

Proof. Suppose $\lambda \in \Sigma$ is an arbitrary covering. Since (X, Σ) is \aleph_0 -bounded, there is a countable uniform covering $\mu \in \Sigma$ such that $\mu \succ \lambda$. For any $M_n \in \mu$ we choose one $L_{M_n} \in \lambda$ such that $M_n \subset L_{M_n}$. Put $\lambda_0 = \{L_{M_n}, n \in N\}$. Then $\lambda_0 \subset \lambda$ is a countable subcovering, [5].

Conversely, let $\lambda \in \Sigma$ be an any covering and $\mu, \eta \in \Sigma$ are uniform coverings such that $\eta * \succ \mu$ and $\mu * \succ \lambda$. Let η_0 be a countable subcovering of η , [5]. For each $E \in \eta_0$ choose one element $x_E \in E$ and put $G = \{x_E : E \in \eta_0\}$. It is clear that *G* is a countable subset of the space (X, Σ) . Let $E \in \eta$ be an any element and $y \in E$ be an arbitrary selected point. Then there is $x_E \in G$ such that $y \in \eta(x_E)$. There is $M \in \mu$ such that $x_E \in \eta(y) \subset \eta(E) \subset M$. It follows from this, that $\eta(E) \subset \mu(x_E)$. Now, for x_E choose one $L_{x_E} \in \lambda$ such that $\mu(x_E) \subset L_{x_E}$. Let $\lambda_0 = \{L_{x_E} : x_E \in G\}$. Then $\eta * \succ \lambda_0$. Therefore, $\lambda_0 \in U$. So (X, U) is \aleph_0 -bounded.

Theorem 1 Let (X, Σ) be an arbitrary uniform space. Then there exists a \aleph_0 -bounded uniformity Σ_l on X, satisfying the following conditions:

1) $\Sigma_l \subset \Sigma$;

2) the topologies generated by Σ_l and Σ coincide;

3) Σ_l is the largest \aleph_0 -bounded uniformity contained in Σ_l .

Proof. Let $\Sigma_l = \{\lambda \in \Sigma : \text{there are a countable covering } \mu \in \Sigma \text{ which refines } \lambda\}$. We verify that all the conditions of uniformity are satisfied. Let us check the condition (*P*1). Let $\lambda \in \Sigma_l$ and $\lambda \succ \mu$. Then there are a countable covering $\gamma \in \Sigma$ which is a refinement of λ . Then, $\mu \in \Sigma_l$. Condition (*P*1) is fulfilled. Now we check the condition (*P*2). Let $\lambda_1, \lambda_2 \in \Sigma_l$. Then there exist countable covering $\mu_1, \mu_2 \in \Sigma$, such that $\mu_1 \succ \lambda_1$ and $\mu_2 \succ \lambda_2$. Put $\mu = \mu_1 \land \mu_2$. Note that μ is a countable covering and $\mu \succ \lambda_1 \land \mu_2$. By the definition of Σ_l we have that $\lambda_1 \land \lambda_2 \in \Sigma_l$. Put $\lambda = \lambda_1 \land \lambda_2$. Then $\lambda \succ \lambda_1$ and $\lambda \succ \lambda_2$. Let $\lambda \in \Sigma_l$. Then there are a countable covering $\mu \in \Sigma$ which is a refinement of λ . Let $\gamma \in \Sigma$ be a uniform covering such as $\gamma \ast \succ \mu$. Then from Exercise 8.1.1. in [5], the condition (*P*3) is satisfied. Let $x, y \in X$ are distinct points. Then there are a covering $\lambda \in \Sigma$ such as $y \notin \lambda(x)$. If $\mu \in \Sigma$ is a countable covering such as $\mu \succ \lambda$, then $y \notin \mu(x)$. Hence, condition (*P*4) is also satisfied. It is easy to see that $\tau_{\Sigma} = \tau_{\Sigma_l}$. By the construction, Σ_l is the greatest uniformity contained in Σ .

A uniformity Σ_l in the previous theorem is called the \aleph_0 -bounded reflection of the Σ , and the completion (X^*, Σ_l^*) of the uniform space (X, Σ_l) is called the *R*-compactification of the uniform space (X, Σ) . The *R*-compactification of a uniform space (X, Σ) is denoted by $(vX, v\Sigma)$. If Σ_X is the universal uniformity space X, then $(vX, v\Sigma)$ is the *R*-extension of the space X.

 Σ_l be a \aleph_0 -bounded reflection of the uniformity Σ , and $j_X : (X, \Sigma_l) \to (X, \Sigma_l)$ be a canonical uniform embedding, $j_X(x) = x$ for any $x \in X$. Since $\Sigma_l \subset \Sigma$ and $(X^*, \Sigma_l^*) = (vX, v\Sigma)$, then the canonical injection $j_X : (X, \Sigma) \to (vX, v\Sigma)$ is uniformly continuous.

Theorem 2 Let $g: (X, \Sigma) \to (Y, \Sigma')$ be a uniformly continuous mapping of (X, Σ) onto (Y, Σ') , [7]. Then there is a unique uniformly continuous mapping "onto" $v(g): (vX, v\Sigma) \to (vY, v\Sigma')$ such that $v(g) \circ j_X = j_Y \circ g$.

Theorem 3 For any space (X, Σ) there exist exactly one (up to a uniform isomorphism) *R*-complete space $(vX, v\Sigma)$ with the following properties:

1. There exist a uniformly isomorphism $j : (X, \Sigma) \to (vX, v\Sigma)$ for which $[j(X)]_{vX} = vX$.

2. For any uniformly mapping $g: (X, \Sigma) \to (R, \Sigma_R)$, there exists a uniformly continuous mapping $\hat{g}: (vX, v\Sigma) \to (R, \Sigma_R)$ such as $\hat{g} \circ j = g$.

Proof. Let $g: (X, \Sigma) \to (R, \Sigma_R)$ be a uniformly mapping of a space (X, Σ) to a space (R, Σ_R) . Consider the extension $\hat{g}: (sX, s\Sigma_X) \to (\lambda R, \Sigma')$ of the mapping g, where $(sX, s\Sigma_X)$ is the Samuel compactification (see [14]) with respect to universal uniformity, $(\lambda R, \lambda \Sigma_R)$ is the one-point compactification (see [14]) of the space (R, Σ_R) . Let $N_g = \hat{g}^{-1}(R)$. Clearly that $X \subset N_g$. Denote by F the set of all continuous real functions on X. Put $vX = \bigcap_{g \in F} N_g$. The mapping

 $j: (X, \Sigma) \to (vX, v\Sigma), j(x) = s(x)$ as $x \in X$, is a uniform isomorphism. Therefore, condition 1. is satisfied. It follows from the construction that $(vX, v\Sigma)$ satisfies condition 2. The *R*-completeness of the space $(vX, v\Sigma)$ follows from the fact that a product is *R*-complete iff each factor of the product is *R*-complete.

Lemma 2 Let (X, Σ) be a space and (X_0, Σ_{X_0}) its dense subspace, and $g_0 : (X_0, \Sigma_{X_0}) \to (R, \Sigma_R)$ be a uniformly mapping of (X_0, Σ_{X_0}) into (R, Σ_R) . Then there exist a unique uniformly mapping $g : (X, \Sigma) \to (R, \Sigma_R)$ such as $g|_{X_0} = g_0$.

Proof. Suppose $x \in X$ is an any point, and B_x be a neighborhood filter for x in (X, Σ) , [3]. Put $F_x = B_x \cap \{X_0\}$. Then F_x is Cauchy filter in (X_0, Σ_{X_0}) . It is clear that $g(F_x)$ is the base of some Cauchy filter F_R in (R, Σ_R) . Let $y \in R$ be the limit point. Put g(x) = y, [7]. Thus, the mapping $g : X \to R$ of the set X to R is defined. We show that g is uniformly continuous. Let $\lambda \in \Sigma_R$ be a covering. Choose a covering $\mu \in \Sigma_R$ such that $\mu * \succ \lambda$. Then there exists $\lambda_0 \in \Sigma_{X_0}$ such that $g_0\lambda_0 \succ \mu$. We show that $g[\lambda_0] \succ [\mu]$, where $[\lambda_0] = \{|L_0|_X : L_0 \in \lambda_0\}$. Let $[L_0]_X \in [\lambda_0]$. If $x \in [L_0]_X$, then by the definition of the mapping g, $g(x) \in [g(L_0)]_R$. Since $g_0\lambda_0 * \succ \lambda$, then $\mu(g(L_0)) \subset L$ for some $L \in \lambda$. Therefore, $[g(L_0)]_R \subset L$. So, $g[\lambda_0] \succ \lambda$. According to the definition of the mapping g we have that $g|_{X_0} = g_0$. The uniqueness of g follows from the fact that any two continuous mappings defined on a Hausdorff space coinciding on a dense subspace coincide on the entire space.

Lemma 3 Let (X, Σ) be a space and (X_0, Σ_{X_0}) its subspace. If every uniformly mapping $g : (X, \Sigma) \to (R, \Sigma_R)$ can be extended uniformly continuous to (X, Σ) , then every uniformly continuous mapping $g : (X_0, \Sigma_{X_0}) \to \prod_{i \in I} (R_i, \Sigma_{R_i})$ to the product of copies of the real line also can be extended uniformly continuous to (X, Σ) . If (X_0, Σ_{X_0}) is dense in (X, Σ) , then every uniformly mapping of $g : (X_0, \Sigma_{X_0}) \to (Y, \Sigma')$, $Y = [Y] \subset \prod_{i \in I} (R_i, \Sigma_{R_i})$ into a closed subspace (Y, Σ') of such a product extends to a uniformly mapping of (X, Σ) into (Y, Σ') , [7], [12].

Proof. Let $g: (X_0, \Sigma_{X_0}) \to \prod_{i \in I} (R_i, \Sigma_{R_i})$ be a uniformly continuous mapping, where $R_i = R$ for any $i \in I$. For each $i \in I$ the extension $\hat{g}_i: (X, \Sigma) \to (R_i, \Sigma_{R_i})$ of the composition $p_i \circ g: (X_0, \Sigma_{X_0}) \to (R_i, \Sigma_{R_i})$ is defined. Obviously, [6] that the diagonal mapping $\Delta g_i: (X, \Sigma) \to \prod_{i \in I} (R_i, \Sigma_{R_i})$ is an extension of the mapping $g: (X_0, \Sigma_{X_0}) \to \prod_{i \in I} (R_i, \Sigma_{R_i})$. If (X_0, Σ_{X_0}) is dense in (X, Σ) , then for the extension $\Delta g_i: (X, \Sigma) \to \prod_{i \in I} (R_i, \Sigma_{R_i})$ of the mapping $j_Y \circ g: (X_0, \Sigma_{X_0}) \to \prod_{i \in I} (R_i, \Sigma_{R_i})$ we have $\Delta g_i(X) = \Delta g_i[X_0] \subset [\Delta X_0]_{i \in I} \subset [Y] = Y$. Therefore, the mapping $\Delta g_i|_Y: (X, \Sigma) \to (Y, \Sigma')$ is an extension of the mapping g, [5].

Theorem 4 For every uniformly mapping $g : (X, \Sigma) \to (Y, \Sigma')$ of a space (X, Σ) to any *R*-complete space (X, Σ) , there are an uniformly mapping $\hat{g} : (vX, v\Sigma) \to (Y, \Sigma')$ such as $\hat{g} \circ j = g$, where $j : (X, \Sigma) \to (vX, v\Sigma)$ is a uniformly isomorphic embedding.

The proof follows from Theorem 3.11.3 in [13], Theorem 3, and Lemmas 2 and 3.

The uniqueness of the space $(vX, v\Sigma)$ follows from Theorems 3 and 4.

REFERENCES

- 1. A.A. Borubaev, Uniform Spaces and Uniformly Continuous Mappings, Ilim, Frunze, 1990 [in Russian].
- 2. A.A. Borubaev, Uniform Topology and its Applications, Ilim, Bishkek, 2021.
- 3. Lj.D.R. Kočinac, Selection principles in uniform spaces, Note Mat. 22, 127-139 (2003).
- 4. B.E. Kanetov, Some Classes of Uniform Spaces and Uniformly Continuous Mappings, Bishkek, 2013 [in Russian].
- 5. B.E. Kanetov, U.A. Saktanov, A.M. Baidzhuranova, AIP Conference Proc. 2334, 020013 (2021). https://doi.org/10.1063/5.0046220.
- 6. B.E. Kanetov and N.A. Baigazieva, AIP Conference Proc. 1997, 020085 (2018). https://doi.org/10.1063/1.5049079.
- 7. B.E. Kanetov, U.A. Saktanov, D.E. Kanetova, AIP Conference Proc. 2183, 030011 (2019). https://doi.org/10.1063/1.5136115.
- 8. B.E. Kanetov, A.M. Baidzhuranova, B.A. Almazbekova, AIP Conference Proc. 2483, 020004 (2022). https://doi.org/10.1063/5.0129289.
- 9. B.E. Kanetov, D.E. Kanetova, N.A. Baigazieva, AIP Conference Proc. 2334, 020012 (2021). https://doi.org/10.1063/5.0046218.
- 10. B.E. Kanetov, D.E. Kanetova, N.A. Altybaev, AIP Conference Proc. 2334, 020011 (2021). https://doi.org/10.1063/5.0046213.
- 11. B.E. Kanetov, D.E. Kanetova, M.O. Zhanakunova, AIP Conference Proc. 2183, 030010. (2019). https://doi.org/10.1063/1.5136114
- 12. B.E. Kanetov and D.E. Kanetova, AIP Conference Proc. 1997, 020023 (2018). https://doi.org/10.1063/1.5049017.
- 13. R. Engelking, General Topology, Moscow, Mir, 1986 [in Russian].
- 14. P. Samuel, Ultrafilters and compactifications of uniform spaces, Trans. Amer. Math. Soc. 64, 100-132 (1948).
- 15. T. Shirota, A class of topological spaces, Osaka Math. J. 4, 23-40 (1952).