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Abstract. As it is well known, there are various constructions of the R-compactification (Hewitt real compactification) of a uniform
space [13], [15]. In this work we propose a new construction of the R-compactification (Hewitt real compactification) of a uniform
space.
Keywords: ℵ0-boundedness, R-compactification, R-extension, R-completeness.
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INTRODUCTION

In this paper, it is presupposed that all uniform spaces are Hausdorff. Consequently, the mappings within these spaces
are uniformly continuous.

For systems λ and µ of a set X , we have [11]:

λ ∧µ = {L
⋂

M : L ∈ λ ,M ∈ β}. λ (x) =
⋃

St(λ ,x);
St(λ ,x) = {L ∈ λ : L � x}, x ∈ X ;

λ (H) =
⋃

St(λ ,H), St(λ ,H) = {L ∈ λ : L
⋂

H 6=∅}, H ⊂ X .

For coverings λ and µ of the set X , the symbol λ � µ means that the covering λ is a refinement of the covering µ ,
i.e. for any L ∈ λ there are M ∈ µ such as L⊂M, and the symbol λ∗ � µ denote that the covering λ is a strongly star
refinement of µ , i.e. for any L ∈ λ there are M ∈ µ such as λ (L) ⊂M. Let g : X → Y be a mapping. If λ and µ are
the coverings of X and Y , respectively, then gλ = {gL : L ∈ λ} and g−1µ = {g−1M : M ∈ µ} are coverings of Y and
X , respectively, [6].

A Tychonoff space X is called R-complete, if there is no Tychonoff space X∗ that satisfies the following two
conditions:
(RC1) An embedding exists that is homeomorphic to r : X → X∗ such as r(X) 6= [r(X)]X∗ = X∗.
(RC2) For any continuous real mapping g : X → R there is a mapping g∗ : X∗→ R such as g∗r = g, [13].
Asume that X is a nonempty set. If the following conditions are met, the system Σ of coverings of set X is referred

to as a uniformity on X:
(P1) If λ ∈ Σ and λ is a refinement of the covering µ of the set X , then µ ∈ Σ;
(P2) For any λ1 ∈ Σ and λ2 ∈ Σ there are λ ∈ Σ such as λ � λ1 and λ � λ2;
(P3) For any λ ∈ Σ there are µ ∈ Σ such as µ∗ � λ ;
(P4) For any pair of different points x,y ∈ X there are λ ∈ Σ such as no element λ contains both x and y.
For the uniformity Σ by τΣ we denote the topology generated by the uniformity. When a uniformity Σ on a set X

produces the same topology as X , we can say that Σ is a uniformity on the topological space X . The filter F is called
a Cauchy filter in (X ,Σ) if λ

⋂
F 6=∅ for any λ ∈ Σ, [9].

A uniform space (X ,Σ) is called:
(i) precompact if the uniformity Σ has a base that comprises finite coverings, [1], [9];
(ii) the uniformity Σ is considered ℵ0-bounded if it has a base comprising countable coverings, [3].
(iii) complete if every Cauchy filter in it converges, [1], [2], [4].
A uniform space (X∗,Σ∗) is called the completion of a uniform space (X ,Σ), if
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1. X ⊂ X∗;
2. (X ,Σ) is everywhere dense in (X∗,Σ∗);
3. (X∗,Σ∗) - complete, [5].
The completion (X∗,Σ∗c) of a uniform space (X ,Σc) is called the Samuel compactification of (X ,Σ), where Σc is the

precompact reflection of the uniformity Σ (see [1]). The notation (sX ,sΣ) represents the Samuel compactification of
a uniform space (X ,Σ), [5], [10].

A mapping g : (X ,Σ)→ (Y,Σ
′
) of a space (X ,Σ) into a space (Y,Σ

′
) is called uniformly continuous if for any µ ∈ Σ

′

there are λ ∈ Σ such as gλ � µ , [1], [2].
Suppose g : (X ,Σ)→ (Y,Σ

′
) is a uniformly continuous mapping from a space (X ,Σ) to a space (Y,Σ

′
). A bijective

mapping g : (X ,Σ)→ (Y,Σ
′
) of a space (X ,Σ) to a space (Y,Σ

′
) is called a uniform homeomorphism or a uniform

isomorphism if both g : (X ,Σ)→ (Y,Σ
′
) and g−1 : (Y,Σ

′
)→ (X ,Σ) are uniformly continuous. For each space (X ,Σ)

and any subspace (X0,ΣX0), the formula jX0(x)= x defines a uniformly mapping jX0 : (X0,ΣX0)→ (X ,Σ). The mapping
jX0 is called a uniform embedding of the subspace (X0,ΣX0) into the space (X ,Σ), [1], [2], [4].

R-COMPACTIFICATION OF UNIFORM SPACE

Let (X ,Σ) be a uniform space.

Lemma 1 A uniform space (X ,Σ) is ℵ0-bounded iff every uniform covering contains a countable subcovering.

Proof. Suppose λ ∈ Σ is an arbitrary covering. Since (X ,Σ) is ℵ0-bounded, there is a countable uniform covering
µ ∈ Σ such that µ � λ . For any Mn ∈ µ we choose one LMn ∈ λ such that Mn ⊂ LMn . Put λ0 = {LMn ,n ∈ N}. Then
λ0 ⊂ λ is a countable subcovering, [5].

Conversely, let λ ∈ Σ be an any covering and µ,η ∈ Σ are uniform coverings such that η∗ � µ and µ∗ � λ . Let η0
be a countable subcovering of η , [5]. For each E ∈ η0 choose one element xE ∈ E and put G = {xE : E ∈ η0}. It is
clear that G is a countable subset of the space (X ,Σ). Let E ∈ η be an any element and y ∈ E be an arbitrary selected
point. Then there is xE ∈ G such that y ∈ η(xE). There is M ∈ µ such that xE ∈ η(y) ⊂ η(E) ⊂M. It follows from
this, that η(E) ⊂ µ(xE). Now, for xE choose one LxE ∈ λ such that µ(xE) ⊂ LxE . Let λ0 = {LxE : xE ∈ G}. Then
η∗ � λ0. Therefore, λ0 ∈U . So (X ,U) is ℵ0-bounded.

Theorem 1 Let (X ,Σ) be an arbitrary uniform space. Then there exists a ℵ0-bounded uniformity Σl on X, satisfying
the following conditions:

1) Σl ⊂ Σ;
2) the topologies generated by Σl and Σ coincide;
3) Σl is the largest ℵ0-bounded uniformity contained in Σ.

Proof. Let Σl = {λ ∈ Σ : there are a countable covering µ ∈ Σ which refines λ}. We verify that all the conditions of
uniformity are satisfied. Let us check the condition (P1). Let λ ∈ Σl and λ � µ . Then there are a countable covering
γ ∈ Σ which is a refinement of λ . Then, µ ∈ Σl . Condition (P1) is fulfilled. Now we check the condition (P2). Let
λ1,λ2 ∈ Σl . Then there exist countable covering µ1,µ2 ∈ Σ, such that µ1 � λ1 and µ2 � λ2. Put µ = µ1 ∧ µ2. Note
that µ is a countable covering and µ � λ1 ∧ µ2. By the definition of Σl we have that λ1 ∧λ2 ∈ Σl . Put λ = λ1 ∧λ2.
Then λ � λ1 and λ � λ2. Let λ ∈ Σl . Then there are a countable covering µ ∈ Σ which is a refinement of λ . Let γ ∈ Σ

be a uniform covering such as γ∗ � µ . Then from Exercise 8.1.I. in [5], the condition (P3) is satisfied. Let x,y ∈ X
are distinct points. Then there are a covering λ ∈ Σ such as y /∈ λ (x). If µ ∈ Σ is a countable covering such as µ � λ ,
then y /∈ µ(x). Hence, condition (P4) is also satisfied. It is easy to see that τΣ = τΣl . By the construction, Σl is the
greatest uniformity contained in Σ.

A uniformity Σl in the previous theorem is called the ℵ0-bounded reflection of the Σ, and the completion (X∗,Σ∗l )
of the uniform space (X ,Σl) is called the R-compactification of the uniform space (X ,Σ). The R-compactification
of a uniform space (X ,Σ) is denoted by (vX ,vΣ). If ΣX is the universal uniformity space X , then (vX ,vΣ) is the
R-extension of the space X .

Σl be a ℵ0-bounded reflection of the uniformity Σ, and jX : (X ,Σl)→ (X ,Σl) be a canonical uniform embedding,
jX (x) = x for any x ∈ X . Since Σl ⊂ Σ and (X∗,Σ∗l ) = (vX ,vΣ), then the canonical injection jX : (X ,Σ)→ (vX ,vΣ) is
uniformly continuous.
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Theorem 2 Let g : (X ,Σ)→ (Y,Σ
′
) be a uniformly continuous mapping of (X ,Σ) onto (Y,Σ

′
), [7]. Then there is a

unique uniformly continuous mapping “onto” v(g) : (vX ,vΣ)→ (vY,vΣ
′
) such that v(g)◦ jX = jY ◦g.

Theorem 3 For any space (X ,Σ) there exist exactly one (up to a uniform isomorphism) R-complete space (νX ,νΣ)
with the following properties:

1. There exist a uniformly isomorphism j : (X ,Σ)→ (vX ,vΣ) for which [ j(X)]
νX = νX.

2. For any uniformly mapping g : (X ,Σ)→ (R,ΣR), there exists a uniformly continuous mapping ĝ : (νX ,νΣ)→
(R,ΣR) such as ĝ◦ j = g.

Proof. Let g : (X ,Σ)→ (R,ΣR) be a uniformly mapping of a space (X ,Σ) to a space (R,ΣR). Consider the extension
ĝ : (sX ,sΣX )→ (λR,Σ

′
) of the mapping g, where (sX ,sΣX ) is the Samuel compactification (see [14]) with respect to

universal uniformity, (λR,λΣR) is the one-point compactification (see [14]) of the space (R,ΣR). Let Ng = ĝ−1(R).
Clearly that X ⊂ Ng. Denote by F the set of all continuous real functions on X . Put νX =

⋂
g∈F

Ng. The mapping

j : (X ,Σ)→ (νX ,νΣ), j(x) = s(x) as x ∈ X , is a uniform isomorphism. Therefore, condition 1. is satisfied. It follows
from the construction that (νX ,νΣ) satisfies condition 2. The R-completeness of the space (νX ,νΣ) follows from the
fact that a product is R-complete iff each factor of the product is R-complete.

Lemma 2 Let (X ,Σ) be a space and (X0,ΣX0) its dense subspace, and g0 : (X0,ΣX0)→ (R,ΣR) be a uniformly mapping
of (X0,ΣX0) into (R,ΣR). Then there exist a unique uniformly mapping g : (X ,Σ)→ (R,ΣR) such as g|X0 = g0.

Proof. Suppose x ∈ X is an any point, and Bx be a neighborhood filter for x in (X ,Σ), [3]. Put Fx = Bx
⋂
{X0}. Then

Fx is Cauchy filter in (X0,ΣX0). It is clear that g(Fx) is the base of some Cauchy filter FR in (R,ΣR). Let y ∈ R be the
limit point. Put g(x) = y, [7]. Thus, the mapping g : X → R of the set X to R is defined. We show that g is uniformly
continuous. Let λ ∈ ΣR be a covering. Choose a covering µ ∈ ΣR such that µ∗ � λ . Then there exists λ0 ∈ ΣX0 such
that g0λ0 � µ . We show that g [λ0] � [µ], where [λ0] = {|L0|X : L0 ∈ λ0}. Let [L0]X ∈ [λ0]. If x ∈ [L0]X , then by
the definition of the mapping g, g(x) ∈ [g(L0)]R. Since g0λ0∗ � λ , then µ(g(L0)) ⊂ L for some L ∈ λ . Therefore,
[g(L0)]R ⊂ L. So, g [λ0]� λ . According to the definition of the mapping g we have that g|X0 = g0. The uniqueness of g
follows from the fact that any two continuous mappings defined on a Hausdorff space coinciding on a dense subspace
coincide on the entire space.

Lemma 3 Let (X ,Σ) be a space and (X0,ΣX0) its subspace. If every uniformly mapping g : (X ,Σ)→ (R,ΣR) can be
extended uniformly continuous to (X ,Σ), then every uniformly continuous mapping g : (X0,ΣX0)→ ∏

i∈I
(Ri,ΣRi) to the

product of copies of the real line also can be extended uniformly continuous to (X ,Σ). If (X0,ΣX0) is dense in (X ,Σ),
then every uniformly mapping of g : (X0,ΣX0)→ (Y,Σ

′
), Y = [Y ] ⊂ ∏

i∈I
(Ri,ΣRi) into a closed subspace (Y,Σ

′
) of such

a product extends to a uniformly mapping of (X ,Σ) into (Y,Σ
′
), [7], [12].

Proof. Let g : (X0,ΣX0)→ ∏
i∈I
(Ri,ΣRi) be a uniformly continuous mapping, where Ri = R for any i ∈ I. For each i ∈ I

the extension ĝi : (X ,Σ)→ (Ri,ΣRi) of the composition pi ◦g : (X0,ΣX0)→ (Ri,ΣRi) is defined. Obviously, [6] that the
diagonal mapping ∆

i∈I
gi : (X ,Σ)→ ∏

i∈I
(Ri,ΣRi) is an extension of the mapping g : (X0,ΣX0)→ ∏

i∈I
(Ri,ΣRI ). If (X0,ΣX0)

is dense in (X ,Σ), then for the extension ∆
i∈I

gi : (X ,Σ)→ ∏
i∈I
(Ri,ΣRI ) of the mapping jY ◦ g : (X0,ΣX0)→ ∏

i∈I
(Ri,ΣRi)

we have ∆
i∈I

gi(X) = ∆
i∈I

[X0] ⊂
[

∆X0
i∈I

]
⊂ [Y ] = Y . Therefore, the mapping ∆

i∈I
gi|Y : (X ,Σ)→ (Y,Σ

′
) is an extension of

the mapping g, [5].

Theorem 4 For every uniformly mapping g : (X ,Σ)→ (Y,Σ
′
) of a space (X ,Σ) to any R-complete space (X ,Σ),

there are an uniformly mapping ĝ : (νX ,νΣ)→ (Y,Σ
′
) such as ĝ◦ j = g, where j : (X ,Σ)→ (νX ,νΣ) is a uniformly

isomorphic embedding.

The proof follows from Theorem 3.11.3 in [13], Theorem 3, and Lemmas 2 and 3.
The uniqueness of the space (νX ,νΣ) follows from Theorems 3 and 4.
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